フラックス法を用いた多成分系遷移金属オキシナイトライドの合成と光触媒活性

東京大学大学院工学系研究科 高田 剛

水の光分解

〇水を分解するためのバンド準位

〇励起電子-正孔の高い移動度(結晶性)

〇表面での触媒作用(適切な助触媒と微細構造制御)

太陽エネルギー変換

 ① 波長領域の拡張;新規光触媒材料の開発(バンドギャップの縮小)

 ② 各波長での量子収率の向上;合成方法、助触媒の改良

dⁿ (n=1~9) 電子配置 Mn³⁺, Fe³⁺, Ni²⁺, Ti³⁺, etc. 不活性

N2p軌道の導入により価電子帯の上端がシフト

GaN, ZnOのバンドギャップは 3.4 eV, 3.0 eV, 複合化によりバンドギャップは縮小

可視光(~500 nm)で水分解可能

研究内容

1)フラックス添加による新規触媒合成方法の検討 目的:結晶性向上と粒子形状制御のための合成方法の確立

・Ta₃N₅, BaTaO₂N結晶微粒子の合成

2) 新規多成分系オキシナイトライドの合成と光触媒活性 目的:より多くの候補材料を見出す。バンド位置の制御

・ペロブスカイト系化合物: BaTa₂N-NaTaO₃
 ・アノソバイト系化合物: Ta₃N₅-Mg,Zrドープ

3)格子欠陥制御による高活性化
目的:格子欠陥と光触媒活性の関係を解明。高活性化の指針構築

・SrTiO3-異原子価カチオンドープ(欠陥構造と光触媒活性)

合成方法の根本的な改良が必要!

フラックス法

接触界面(接点)のみで反応が進行 長時間の焼成が必要

フラックス有り

固体からの溶出、液相を介して移動 (低温)短時間での合成が可能

フラックス(溶融塩)を用いて溶解させ液相経由で結晶を再析出させる。 原子の拡散を促進:高結晶性オキシナイトライド粒子の合成。

フラックス法によるTa₃N₅の合成

フラックスを用いた合成ルートを何通りか確立

アルミナ管

Ta₂O₅+Na₂CO₃から窒化

Ta₂O₅から窒化

TaCl₅+NaClから窒化

5-753 30.0kV 7.3mm x100k SE(U)

1)一段階水分解反応

3)水素生成反応(テスト反応)

ペロブスカイト型金属オキシナイトライド

複合化による多様な化合物のバリエーション:多様な機能

BaTaO₂N 長波長まで利用可能(~660 nm) 水素生成可能(Z-スキーム)

酸素は生成できない

フラックス法によるBaTaO₂Nの合成と
二段階水分解の検討
BaCO₃ + 1/2Ta₂O₅
$$\frac{NH_3}{900^{\circ}C}$$
 BaTaO₂N(SSR)
BaTaO₂N(SSR) $\frac{NH_3}{NaCl}$ BaTaO₂N(F)
700~900°C

BaTaO₂N-WO₃による二段階水分解反応

<反応器>側方照射型 <光源>300 W Xeランプ(λ>420 nm) <触媒>BaTaO₂N: Pt 0.3 wt% 0.05 g, WO₃: Pt 0.5wt% 0.1 g <溶液>1 mM Nal aq. 250 ml

光触媒粒子の結晶性向上により活性が向上

研究内容

1)フラックス添加による新規触媒合成方法の検討 目的:結晶性向上と粒子形状制御のための合成方法の確立

・Ta₃N₅, BaTaO₂N結晶微粒子の合成

2) 新規多成分系オキシナイトライドの合成と光触媒活性 目的:より多くの候補材料を見出す。バンド位置の制御

・ペロブスカイト系化合物:BaTa₂N-NaTaO₃
 ・アノソバイト系化合物:Ta₃N₅-Mg,Zrドープ

3)格子欠陥制御による高活性化
目的:格子欠陥と光触媒活性の関係を解明。高活性化の指針構築

・SrTiO₃-異原子価カチオンドープ(欠陥構造と光触媒活性)

多成分系オキシナイトライド ーバンド位置の制御―

複合化:バンド位置の調節、耐熱性の向上

フラックス法による合成条件の検討:高結晶性の単離した微粒子 各成分の均質混合

BaTaO₂N-NaTaO₃複合系

Na₂CO₃フラックスによるBaTaO₂Nの合成(900°C)

水洗後

フラックス(Na₂CO₃)が残留

200~400 nmの分散した粒子

BaTaO₂N-NaTaO₃複合系

Na₂CO₃フラックスによるBaTaO₂Nの合成(950°C)

950℃焼成ではNa₂CO₃は合成時にほぼ揮発

粒子間の凝集も見られる

XRD; Ba-Ta oxynitride

(Na₂CO₃フラックスを用いて合成)

20/ degree

アルカリ土類—Ta系での酸素生成は初めて。 価電子帯の電位変化によるもの。

新規アノソバイト系化合物: Ta₃N₅-Mg,Zrドープ

Ta系(オキシ)ナイトライド

Ta₃N₅ [Anosovite]:水素生成能力が乏しい

ATaO₂N(A=Ca,Sr,Ba) [Perovskite]:酸素生成能力が乏しい

TaON [Buddelyte]:d⁰遷移金属オキシナイトライドの中では比較的高活性 準安定相 合成方法が限られる→改良が困難

水素および酸素生成能力の高い安定相の新規化合物を開発することは水分解を達成する上で重要な課題!

ペロブスカイト系;多様な元素の組み合わせで多くの化合物が合成可能

非ペロブスカイト系;化合物の種類は限られている

新規アノソバイト型オキシナイトライドの合成

アノソバイト構造 Ta_3N_5

 $Ta_3N_5 \ge M_3X_{5-\delta}$ の固溶体を合成

MサイトにはIV, V族遷移金属、アルカリ金属・アルカリ土類 金属・希土類ではイオン半径の小さなLi・Mg・Yが候補

XサイトはO, N。M: X = 3:5-δになるように元素を選択

M=Mg+2Zrで導入。M₃X_{5-ð}=MgO+Zr₂ON₂~MgO+2ZrO₂

Ta₃N₅-M₃X₅(M=Mg+2Zr)の合成

 $Ta_3N_5 - M_3X_5(M=Mg+Zr)$

XRD: $Ta_3N_5 - M_3X_5$ (M=Mg+2Zr)

900°C NH₃(200 ml/min) 20-25 h

大部分のMg, Zr成分がAnosovite-Ta₃N₅の構造中に取り込まれている

UV-vis DRS: $Ta_3N_5 - M_3X_5(M=Mg+2Zr)$

Mg, Zrドープによる欠陥(Ta4+種)生成抑制効果

欠陥(Ta⁴⁺)生成抑制

(1)
$$Ta^{5+} + N^{3-} \longrightarrow Ta^{4+} + N_2 + V_N$$

(2) $Ta_3N_5 + MgO-Zr_2ON_2 \longrightarrow Mg_{Ta} + Zr_{Ta} + O_N + V_N$

M, Zrドープによりアニオンサイト空孔を意図的に導入、(1)式の平衡を左辺へ移動

(1)
$$\Gamma_{Ta^{5+}=78 \text{ pm}} \longrightarrow \Gamma_{Ta^{4+}=82 \text{ pm}}$$

 $\Gamma_{N^{3-}=132 \text{ pm}} \longrightarrow \Gamma_{V=0 \text{ pm}}$
(2) $\Gamma_{Ta^{5+}=78 \text{ pm}} \longrightarrow \Gamma_{Mg^{2+}, Zr^{4+}=86 \text{ pm}}$
 $\Gamma_{N^{3-}=132 \text{ pm}} \longrightarrow \Gamma_{O^{2-}, V=126, 0 \text{ pm}}$

『c / **『**aの増加によりAnosoviteの6配位構造が安定化、Ta⁴⁺の生成を抑制

研究内容

1)フラックス添加による新規触媒合成方法の検討 目的:結晶性向上と粒子形状制御のための合成方法の確立

・Ta₃N₅, BaTaO₂N結晶微粒子の合成

2) 新規多成分系オキシナイトライドの合成と光触媒活性 目的:より多くの候補材料を見出す。バンド位置の制御

・ペロブスカイト系化合物:BaTa₂N-NaTaO₃ ・アノソバイト系化合物:Ta₃N₅-Mg,Zrドープ

3) 格子欠陥制御による高活性化 目的:格子欠陥と光触媒活性の関係を解明。高活性化の指針構築

・SrTiO₃-異原子価カチオンドープ(欠陥構造と光触媒活性)

欠陥種の特定と光触媒活性との関係を検討

ドーピングによる欠陥密度制御

低原子価カチオンドープ $TiO_2 + M_2O_3$ \longrightarrow Ti_{1-x}M_xO_{2-1/2x}VO_{1/2x}

V₀増加 → Ti³⁺減少

Ti³⁺増加 → V₀減少

n-型半導体(水中):

・空間電荷層の形成

-正孔の表面への移動を促進、電子の移動を低減

・バンド位置のシフト

水溶液中でのバンド位置の変化:水素生成が困難。酸素生成は十分な能力。 ドナー密度の変化で水溶液中でのバンド位置をコントロール可能。

1)フラックス添加による新規触媒合成方法の検討 目的:結晶性向上と粒子形状制御のための合成方法の確立

2)新規多成分系オキシナイトライドの合成と光触媒活性 目的:より多くの候補材料を見出す。バンド位置の制御

-ペロブスカイト系化合物: BaTaO₂N-NaTaO₃ Na₂CO₃フラックス中でBaTaO₂Nを処理することでBaTaO₂N-NaTaO₃ 複合オキシナイトライドを新規に合成。→→→→ 酸素生成が可能

・アノソバイト系化合物: Ta₃N₅-Mg,Zrドープ Mg, Zrドープによりアニオンサイト空孔を導入しTa⁴⁺の生成を抑制。 水素生成活性は飛躍的に向上。酸素生成活性は低下。 3) 格子欠陥制御による高活性化 目的:格子欠陥と光触媒活性の関係を解明。高活性化の指針構築

SrTiO₃-異原子価カチオンドープ(欠陥構造と光触媒活性)
 低原子価カチオンドープ(Sr²⁺→Na⁺, Ti⁴⁺→Ga³⁺)により活性は飛躍的に向上。
 n-型半導体:ドナー電子の水中への溶出によりバンド位置が変化。
 ドーピングによりドナー濃度を制御。 →→→ バンド位置の制御と活性変化。

本研究は、平成17年度日本板硝子材料工学助成会の研究助成を 受けて行われた。同助成会に心より感謝致します。