Jan 28, 2013

1

可溶性有機ケイ素高分子の新展開:酸素や水に極めて安定な 紫外・可視発光材料化と熱分解法による結晶シリコンへの物質変換

奈良先端科学技術大学院大学 物質創成科学研究科 藤木道也

謝辞:川本義樹·加藤雅彦·藤本雄士·斉藤知来·細島進一·川部琢磨·郭起燮 (財)日本板硝子材料工学助成会(2009年度)

Background: Importance of Polymers in Science and Industry

高分子とは?

四大基幹素材の一つ

- 幅広い分野と領域で利用
- 人類の現代生活を支える必需物資
- 産業の基幹となる資材
- 化学・繊維から医療や電子産業、
 航空宇宙分野まで豊かな社会と
 先端技術を実現する機能材料

Background: Importance of Silicon in Science and Industry

4族半導体	シリコンが用いられる主な理由
Si	1. 資源的に豊富(地殻中に27%)
	2. 境境下において無害(低毒性/無毒) 3. 単結晶基板加工・薄膜化が容易
	4. pn制御が容易
3族-5族化合物半導体	5. 高純度化が容易
2族-6族化合物半導体	6. 良好な透明・絶縁膜 (SiO ₂)
	7. 室温で適当なバンドギャップ(1.1eV)

Si以外の元素(特に第3周期以降)では	短所
	1. バルクSi結晶は非発光性(間接遷移)
・高い電子・正孔移動度	2. 電子 (~600cm²/Vs)・正孔(~100 cm²/Vs)
・毒性 ・資源に乏しく、高価 ・安全管理に多大なコスト ・発火性	移動度が比較的低い
	3. 電子、光電変換デバイスに用途が限定
	4. 電界発光デバイス/レーザー??
	ref) 1.55µm光通信帯域で誘導Ramanレーザー
	(Intel, <i>Nature</i> 2005)
	緑色・赤色発光ポーラスSi
	(L.T. Canham, APL 1990, JAP 1997,
	Nature1991)引用回数 5000, 1000, 600回

Importance of Silicon both Science and Industry

アモルファスシリコン(**a-Si**) (結晶Siと比較して)

高分子: Si H_4 , Si₂ H_6 (ガス状モノマー)の3次元架橋重合体

特徴

1. 自由な形状加工が可能

2. 大面積化が可能

3. 単純工程のため、低コスト化

4. 製造温度が比較的低温(300-350℃)

短所

1. SiH₄, Si₂H₆など自然発火性ガスの使用

2. 非発光性欠陥準位(free radical)の形成

3. 電子・正孔移動度(~10 cm²/Vs)がかなり低い

多結晶Si (poly-Si)

現状:アモルファスシリコン(a-Si)のSi-Si吸収帯にエキシマーレーザー照射 Si-H結合の解裂/脱水素反応(化学的はフラッシュ熱分解法)

a-Si : insoluble Si-Si bonded polymers A mixture of 1D, 2D, networks with H-termini 新概念/革新プロセスによる有機・無機ハイブリッド材料 ______ - 設計・創成・手法・要素技術の確立 -

安全な新しい工業化プロセスを視野に入れて

- ・
 ・
 た険なSiH4, Si2H6ガスの代替ソース
- 頻繁に保守を必要とする高価でエキシマーレーザの不使用
- •大気下で安定で、溶媒可溶な固体Siソースは可能か?

Break-through of Si-Based Materials and Devices

1954: Pearsonら(ATT Bell研究所)

c-Siを用いた太陽電池の発明

→1958: バンガード1号(米国海軍:人工衛星)に搭載

1975: Spear, LeComberら(Dundee大学) 不可能とされていた水素終端a-Si:Hのpn制御に成功

1976: Carson, Wronski (RCA) a-Si:Hを用いた太陽電池を試作

1979: Spear, LeComberら(Dundee大学) a-Si:HをTFT試作に成功

1970: IBM Esaki-Tsu Ь

半導体超格子の基本概念の提唱と実証

1970s-90s: III-V族 GaAs/InGaAs 研究が活発化 SiO₂石英系ファイバー用LD光源 (1975-1980)

1988: 古川 (九工大)

Siにおける量子サイズ効果: Egの増大nc-Si:H

1990: 高木ら(キャノン)

SiH₄のCVD法で作製した*nc*-Si:Hが量子サイズ効果により室温で赤色発光

1990: Canham (Royal Signals and Raders) ポーラスシリコン (*por-Si*)から量子細線効果により室温で強く赤色発光

1991: Lehmann, Gösele (Duke Univ) por-Siが量子細線化によりEgがc-Siより0.5eV以上ブルーシフト

1980-1990: 空気中で安定で、溶媒可溶性の鎖状シリコン高分子: Organopolysilane 量子細線効果により室温で強く紫外発光

Silicon shines on

L. Brus, J. Phys. Chem., 1994, 98, 3575

Crossovers between O-D, 1-D, 2-D, and 3-D. How Silicon shines on

14族元素の骨格次元性とバンドギャップ(Eg)

Question: Is it possible to tailor optical band gap between 0.1 and 5.5 eV? Possible approaches: network Si, Si-Ge alloy, 2D-3D meso-structure, OD (nano cluster)

)	,	eV)
14 Group				骨格の階層修	ŧ		
	- · · · · · · · · · · · · · · · · · · ·	3D indirect gap (非発光性)	2D-3D	2D	1D-2D (発光性)	1D direct gap (発光性)	0D
元	С	5.5		-		ca. 8	
素 の	Si	1.1	1.8-2.3	2.3		ca. 3-4	
階	Ge	0.7	1.35	-		ca. 3-4	
僧 性	Sn	0.1 (direct	gap)	-		ca. 3	
	Pb	(0)		-		-	

Silicon shines on

In Physics

•a-Si:H_x by plasma CVD of SiH₄ and Si₂H₆ D. J.Wolford et al, Appl. Phys. Lett., 1983, 42, 369 Porous Si by electrochemical etching L. T. Canham, Appl. Phys. Lett., 1990, 57, 1046 •nc-Si by sputtering Si in H_2 gas S. Furukawa, Phys. Rev. B, 1988, 38, 5726 \cdot nc-Si into SiO₂ by ion implantation Brongersma et al, Appl. Phys. Lett., 2000, 76, 351 •nc-Si by plasma CVD of SiH₄ Y. Kanemitsu, Phys. Rev. B, 1994, 49, 16845 H. Takagi et al, Appl. Phys. Lett., 1990, 56, 2379 •a-Si/SiO₂ superlattice D. J. Lockwood et al. Nature, 1995, 378, 258

In Chemistry $\cdot 0-D \sim SiCl_{4}^{4Na} \rightarrow (Si)_{n} \xrightarrow{RBr} (R)_{m} (Si)_{n} \xrightarrow{\Delta} a-Si$ A. Watanabe, J. Organomet. Chem., 2003, 685, 122. 3Na Δ t-BuSiCl₃ \rightarrow octasilacubane \rightarrow a-Si K. Furukawa et al, Jpn. J. Appl. Phys., 1994, 33, L413 $\cdot 1$ -D ~ R₂SiCl₂ $\rightarrow 2Na$ polysilane •2-D ~ CaSi₂ → siloxene M. Stützmann et al, Phys. Rev. B, 1993, 47, 4806. $RSiCl_3 \xrightarrow{3Na}$ polysilyne K. Furukawa et al, Macromolecules, 1990, 23, 3423. \rightarrow a-Si like [O₂] (by XPS, EDX, IR) M. Fujiki et al, Chem. Mater., 2009, 21, 2459.

温故知新. Kipping (1924), Gilman (1961), Hengge (1975), Shimoda (2006)

Solution Processable Poly-Si for TFT

T. Shimoda et al. (Seiko-Epson & JSR groups), Nature, 2006, 440, 783-786

New Approach of 2D-Si nanosheets

H. Okamoto, Y. Sugiyama, H. Nakano (Toyota R&D). Chem. Eur. J., 2011, 17, 9864-9887.

 $3 \text{ CaSi}_2 + 6 \text{HCl} + 3 \text{ H}_2\text{O} \longrightarrow$

 $Si_2H_3(OH)_3 + 3CaCl_2 + 3H_2$

Shaken with surfactants (SDS) for 10 days

 $3 \text{ CaSi}_2 + 6\text{HCl} \rightarrow (\text{Si}_6\text{H}_6) + 3 \text{ CaCl}_2$ -30 °C

 $(Si_6H_6)_n$ treated with n-decylamine

矢島プロセス $R = Me \rightarrow \beta - SiC$

C. A. Burkhard, *J. Am. Chem. Soc.*, **1945**, *67*, 2173-2174. Yajima, S.; Hasegawa, Y.; Hayashi, J.; Okamura, K. *J. Mater. Sci.* **1978**, *13*, 2569-2576. Interrante, L. V. et al. *Chem. Mater.* **1999**, *11*, 2038-2048.

H. Ichikawa, Development of Organosilicon Polymers, CMC, 1989, 187-196.

Hypothesis: A possible production of (Si)n from soluble Si-containing polymer due to B-H elimination reaction by flash pyrolysis in vacuo

矢島プロセス $R = Me \rightarrow \beta - SiC$

素朴な疑問そして作業仮説

R =>> Et → β-SiC (?) β-水素を有するRが自己還元剤

One-pot synthesis of soluble polysilyne : $(RSi)_n$

 $\begin{array}{l} \mathsf{R} = \mathsf{CH}_3, \, \mathsf{C}_2\mathsf{H}_5, \, \textit{n-}\mathsf{C}_3\mathsf{H}_7, \, \textit{n-}\mathsf{C}_4\mathsf{H}_9, \, \textit{n-}\mathsf{C}_5\mathsf{H}_{11}, \, \textit{n-}\mathsf{C}_6\mathsf{H}_{13}, \\ \textit{n-}\mathsf{C}_8\mathsf{H}_{17}, \, \textit{n-}\mathsf{C}_{10}\mathsf{H}_{21}, \, \textit{n-}\mathsf{C}_{12}\mathsf{H}_{25}, \, \textit{i-}\mathsf{C}_4\mathsf{H}_9, \, \mathsf{CF}_3(\mathsf{CH}_2)_2 \end{array}$

K. Furukawa et al, Macromolecules, 1990, 23, 3423.

Pyrolytic properties of $(n-BuSi)_n$ in N_2

SNIP	Weight loss (%)		
JINP	obs	calc (R/RSi)	
i-Bu	56.9	67.0	
n-Bu	43.3	67.0	

Broad change in PL spectra of pyrolitic *n*-Bu-polysilyne : (*n*-BuSi)_n

Photoluminescence from pyrolyzed (*n*-BuSi)_n (77K, 0.5mW/cm²)

The origin of red-shift at 350-450°C

Nanocrystal

$$E_g \sim E_g^{bulk} + 29.6 (eVÅ)/D$$

 $E_g^{bulk} = 1.1 eV$
D = Si diameter

L. E. Ramos et al. Phys. Stat. Sol. (b), **242** (2005) 3053

(n-BuSi)n

Lockwood, D. J. et al. Nature, **378** (1995) 258

The origin of marked decrease in deep red emission band at 500°C

Intense blue emission particles dispersed in various solvents

λ _{ex} 365nm, 1.0mW/cm², r.t.	cast on quartz
Φ _F = 23% (DMF) 21% (THF)	
14% (Hexane)	
1% (Water)	
τ = 4.8 nsec, > 10nsec (1HF)	

Functional Groups	Region /cm ⁻¹
Si-Si	~480 (this work)
Si-O-Si	1090-1010 (ref)
cf Si-Si (c-Si) (a-Si) ~	508cm ⁻¹ (this work) 460cm ⁻¹ (this work)
1500±1	150cm ⁻¹
electron-phon	ion
Si-Si and Si-C	D-Si coupling ?

Nanometer-size Baumküchen of pyrolized (n-BuSi), exposed to air

TEM and EDX

alike nm-size Baumküchen?

Highly elongated by 10-23% with highly opened angle (~180°) Si:O = 1:3 (EDX)

R(SiOSi): 3.24-3.64 Å~ (1.62-1.82 Å) ×2 Å R(SiOSi): 4 Å~ 2 ×2 Å by forcing polysiloxane

R(SiOSi): 2.6 Å =
$$sin(108^{\circ}/2) \times 1.6$$
 Å x2

Ref)

1. J. S. Nicoll et al. Phys. Chem. Min., 20, 617-624 (1994)

2. E. M. Lupton et al., NIC Symp., 32, 57-64 (2006)

Schematic explanation by chemists Baumküchen Silicon (pyrolized (*n*-BuSi)_n exposed to air)

To design light-emission silicon materials

- ·loss of k-selection rule (decrease in size, introduction of disorder)
- •dimensionality decrease ($3D \rightarrow 2.5D$, 2D)
- introduction of dissymmetry by polar oxygen
- introduction of dissymmetry by electron-phonon coupling (Si-Si / Si-O-Si)

Band-gap engineering from organo (Si/Ge/Sn) polymers

29

PL spectra of [(n-BuSi)_x-block-(n-BuGe)_{1-x}]_n

TG/DTG diagrams (5°C /min, in N_2) Raman spectra a-Ge X=0.00 20 c-Ge 100.0 as-prep X=1.00 (=0.75 80.0 200°C-90min _15 Intensity (normalize) 250°C-90min DTG[%/min] X=0.00 TG[%] 60.0 10 300°C-90min 40.0 350°C-90min 5 20.0 400°C-90min 450°C-90min 0.0 100 200 400 500 600 300 500°C-90min Temp. [°C] 1000 800 600 400 200 Wavenumber (cm⁻¹) TG/DTG spectra (5°C /min, in N₂) X = 0.00熱分解開始一終了温度) 100 200 300 400 $^{500}(^{\circ}C)$ Polymer (°C) X=1.00 336~439 Polymer a-Ge 0.50 257~538 ↓(-H) **c-Ge** ↓ (-R) Polymer 0.00 122-378 a-Ge c-Ge

Raman, HR-TEM, EELS of pyrolitic [(n-BuSi)_x-block-(n-BuGe)_{1-x}]_n film

Next Ideas to Solve Problematic Issues

Φ<1% (at RT) 耐酸化性 → 低 耐水性 → 低い 熱分解物も同様

33

Hypothesis and Design

- ・電子吸引性 → 耐酸化性
- ・2DSi電子構造の制御
- ・発光波長の制御
- ・アルキルポリシリンとの共重合

Nominal mole fraction x = 1.00, 0.75, 0.50, 0.25, 0.00

Polymer Chemistry, 3, 3256-3265(2012)

HR-TEM and EELS images and nano-structures

HR-TEM images of (left) **BSNP** and (right) **FSNP** cast onto a carbon micro grid (scale bar = 20 nm).

Si mapping (left) and **F** mapping (right) images in EELS of **FSNP** on a carbon micro-grid (scale bar = 0.1μ m).

Calculation (TD-DFT/3-21G)

– 0.025 au – 0.027 au

– 0.036 au – 0.041 au

- 0.247 au
- 0.253 au

– 0.265 au – 0.274 au

perhydro-trans-siladecaline

Calculation (TD-DFT/3-21G)

UV-Vis Calculation (TD-DFT/3-21G)

Change in UV-Vis spectra with PL spectrum

Direct-type transition !

Figure 9. PL (-----) and PL excitation (-----) spectra of C10-Si_n in chloro-form. Excitation and fluorescence wavelengths are 350 and 450 nm, re-

Wavelength (nm)

H. Okamoto, Y. Sugiyama, H. Nakano. Chem. Eur. J., 2011, 17, 9864-9887

650

No change in IR spectra to air exposure

Changes in the IR spectra (3500–400 cm⁻¹) of (a) **FSNP** and (b) **BSNP** films cast onto KBr (as-prepared fresh sample and sample left in air for one month).

Change in PL spectra (Film)

Changes in the normalized PL spectra of **FSNP**, **BSNP**, and **FBSNP** (x = 0.50) films after different air-exposure times.

A comparison of three PL spectra (THF, RT)

Change in PL spectra in THF-H2O solution

Changes in the PL spectra of **FSNP**, **BSNP**, and **FBSNP** (x = 0.50) in a THF–water (90/10 (v/v)) solution after different storage times.

Effects of Fluoroalkyl Groups

1. Excellent stability toward air and THF-water (film, solution) upto 300 °C from IR, Raman, PL, Calculation (TD-DFT, 3-21G, B3LYP)

- 2. Direct-type transition from dual indirect-and-direct transitions from UV, PL, PLE, Calculation
- 3. Quantum efficiency ~3% at RT (*cf*. 1% of (n-BuSi)n)

4. Loss of such the stability of pyrolytic products at 500 °C due to release of trifluoropropyl group

環境影響最小化を視野に入れ、機能材料をシンプルプロセス技術で

46

Conclusion

