表面ナノ構造を制御した半導体 光触媒による水の可視光完全分解

前田 和彦

東京工業大学大学院理工学研究科化学専攻 JSTさきがけ研究者『光エネルギーと物質変換』領域

Research background

Conventional energyproduction system Photocatalytic H₂ production from water and solar energy

Basic principle of water splitting on a heterogeneous photocatalyst

(Oxy)nitrides as water-splitting photocatalysts ... Production of H_2 as a renewable energy carrier

$$H_2O \xrightarrow{\text{Sunlight}}_{\text{Photocatalyst}} H_2 + \frac{1}{2}O_2 \quad (\Delta G^0 = 238 \text{ kJ/mol})$$

Maeda & Domen, J. Phys. Chem. C 2007, 111, 7851.

- Wide visible light absorption
- Suitable band structure
- Stable under irradiation

GaN-ZnO solid solution...the first "*reproducible*" example of achieving the visible-light-driven overall water splitting

$$H_2O \xrightarrow{hv (< 3 eV)} H_2 + \frac{1}{2}O_2 \Delta G^0=238 \text{ kJ/mol}$$

GaN $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ ZnO (x = 0.42)

Maeda et al., J. Am. Chem. Soc. **2005**, 127, 8286. Maeda et al., Nature **2006**, 440, 295. Maeda & Domen, Chem. Mater. (Review) **2010**, 22, 612.

Strategy to develop an efficient photocatalyst

Development of a new cocatalyst that efficiently promotes the overall water splitting on GaN:ZnO Development of a new cocatalyst for water splitting

Effect of Cr co-loading on water splitting activity

Maeda et al., J. Catal. **2006**, 243, 303.

λ > 300 nm

Cocatalyst		Activity / μ mol h ⁻¹		Cr coloading	Activity / μ mol h ⁻¹	
Element (oxide)	Loading amount / wt%	H_2	O ₂	amount / wt%	H ₂	O ₂
None	-	0	0			
Cr	1	0	0			
Fe	1	0	0	1	73	36
Со	1	2.0	0	1	48	24
Ni	1.25	126	57	0.125	685	336
Cu	1	2.0	0	1	585	292
Ru	1	71	27	0.1	181	84
Rh	1	50	1.6	1.5	3835	1988
Pd	1	1.0	0	0.1	205	96
Ag	1	0	0	1	11	2.3
lr	1.5	9.3	3.1	0.1	41	17
Pt	1	0.9	0.4	1	775	357

Catalyst: 0.3 g, Reactant soln.: distilled water 370~400 mL, Reaction vessel: Inner irradiation-type, Light source: 450 W high-pressure mercury lamp

Overall water splitting on $Rh_{2-y}Cr_yO_3$ -loaded GaN:ZnO under visible light irradiation

Catalyst: 0.3 g, Reactant soln.: H_2SO_4 aq. 370 mL (pH 4.5), Reaction vessel: Inner irradiation-type, Light source: 450 W high-pressure mercury lamp with a NaNO₂ aq. filter

TEM images of Rh-loaded GaN:ZnO before and after photodeposition of Cr_2O_3

Maeda et al., Angew. Chem., Int. Ed. 2006, 45, 7806. Maeda et al., J. Phys. Chem. C 2007, 111, 7554. Maeda et al., Chem. Eur. J. 2010, 16, 7750.

(before Cr_2O_3 deposition)

Cr₂O₃/Rh/GaN:ZnO

Revealed by XAFS and XPS

Rh (core)

 Cr_2O_3 (shell)

Time course of overall water splitting on core/shell-structured $Cr_2O_3/Rh/GaN:ZnO$ $\lambda > 400 nm$

type, Light source: 450 W high-pressure Hg lamp with a NaNO₂ aq. (2 M) filter

水分解光触媒における助触媒研究

水分解光触媒研究の分野に助触媒開発という一大研究領域を確立

Major problem in the nanoparticulate core/shell system

To increase the activity of $Cr_2O_3/Rh/GaN:ZnO$ by introduction of *Rh nanoparticle core with higher dispersion*

TEM images of GaN:ZnO modified with Rh/Cr₂O₃ (core/shell) nanoparticles by an adsorption method

High-dispersion!!

Size: 1~3 nm

Sakamoto et al., Nanoscale, **2009**, 1, 106. Maeda et al., Chem. Eur. J., **2010**, 16, 7750. Size distribution of Rh nanoparticles adsorbed on the surface of GaN:ZnO

Catalyst: 0.15 g, Reactant soln.: pure H_2O 400 mL, Reaction vessel: Pyrex inner irradiationtype, Light source: 450 W high-pressure Hg lamp with a NaNO₂ aq. (2 M) filter Comparison of activity ...Rh loading amount: 0.3~0.4 wt%

Catalyst: 0.15 g, Reactant soln.: pure H_2O 400 mL, Reaction vessel: Pyrex inner irradiationtype, Light source: 450 W high-pressure Hg lamp with a NaNO₂ aq. (2 M) filter

Effect of the size of Rh nanoparticles on activity

Catalyst: 0.15 g, Reactant soln.: H_2SO_4 aq. 400 mL (pH 4.5), Reaction vessel: Pyrex inner irradiation-type, Light source: 450 W high-pressure Hg lamp with a NaNO₂ aq. (2 M) filter

Overall water splitting on a particulate photocatalyst promoted by two different types of cocatalysts

Introduction of both H_2 and O_2 evolution cocatalysts to improve activity! ...But no successful example for constructing such a structure...

Visible light water splitting ...Effect of coloading Mn₃O₄

 $Mn_{3}O_{4}$ 0.05 wt %

Catalyst: 0.1 g of each, Reactant solution: distilled water 100 mL, Top-irradiation type with a 300 W Xe lamp and a cutoff filter

Summary

Precise control of Rh core size in Rh/Cr₂O₃ nanoparticles

- Successful introduction of size-controlled Rh nanoparticles onto the surface of GaN:ZnO photocatalyst
- \checkmark For application in the core component, smaller Rh works better.
- ✓ Loading another oxygen evolution cocatalyst of Mn_3O_4 nanoparticles further enhances the water-splitting activity.

Mechanism of H₂ evolution on Rh/Cr₂O₃ nanoparticles

✓ The core hosts active sites for H_2 formation, while the Cr_2O_3 shell functions as a selective permeable membrane.

Modification of surface structure in nano-scale is highly important for enhancing water-splitting activity with visible light!

Acknowledgement

Prof. K. Domen...The Univ. of Tokyo
The boss

 Prof. T. Teranishi, T. Ikeda, T. Yoshinaga...Kyoto Univ. & Tsukuba Univ.
Dr. M. Yoshida, N. Sakamoto, A. Xiong...(former) students of our group Collaboration on the core/shell cocatalyst project

Dr. D. Lu...Tokyo Institute of Technology
TEM observations

◆ 日本板硝子材料工学助成会, 日本学術振興会, 科学技術振興機構さきがけ
Funding support