2017年1月26日

第34回無機材料に関する最近の研究成果発表会 ー材料研究に新しい風を-

高品質な銅酸化物高温超伝導膜の 新規低温製造プロセスの提案

島根大学 総合理工学研究科 物理·材料科学領域 助教

舩木 修平

 $\begin{aligned} \text{REBa}_2\text{Cu}_3\text{O}_y &\to \text{RE123} \\ \text{REBa}_2\text{Cu}_4\text{O}_8 &\to \text{RE124} \end{aligned}$

発表のアウトライン

✓背景

> 超伝導現象の発見,及び超伝導転移温度(T_c)の変遷
 > 超伝導の3つの臨界,及び高性能化への指針
 > RE123, RE124超伝導体の特徴,及び現状と課題
 > 目的・検討内容
 > KOH flux法

✓研究成果

- ≻大気中において作製したRE124膜の磁場中特性の向上
 > 雰囲気制御によるRE123及びRE124膜の作製と、
 作製温度の低温下
- ≻後熱処理によるRE124 → RE123相変態と高特性化

超伝導現象の発見 ~1911年~

・超伝導の発見 ・液体ヘリウムの精製

この後、金属系及び合金系の超伝導体が数々発見される

超伝導転移温度(T_)の変遷

出典: http://www.spring8.or.jp/ja/news_publications/press_release/2016/160510/ (2016/12/9アクセス)

超伝導の3つの臨界($T_c - B_c - J_c$)

SHIMANE

高性能化への指針(磁束のピン止め)

各次元のピンニングセンター(PC)

Fig. 超伝導体内に存在するピンニングセンターの概略図。

✓背景

> 超伝導現象の発見,及び超伝導転移温度(T_c)の変遷
 > 超伝導の3つの臨界,及び高性能化への指針
 > RE123, RE124超伝導体の特徴,及び現状と課題
 > 目的・検討内容
 > KOH flux法

✓研究成果

大気中において作製したRE124膜の磁場中特性の向上
 雰囲気制御によるRE123及びRE124膜の作製と、
 作製温度の低温下

≻後熱処理によるRE124 → RE123相変態と高特性化

RE123, RE124超伝導体の特徴

液体窒素温度(77 K)下における応用が期待されているが, 電気的異方性を有するため配向プロセスが必要

Schematic image of Coated Conductor tape

Coated Conductor方式

- ・金属テープ:機械的強度の確保
- ・配向層:粒界によるJ。低下を抑える
- ・複数のバリア層:金属原子の拡散の防止
- ・安定化層:超伝導膜を保護

低温かつ高速でRE124, RE123膜を成膜可能 とする簡易的な手法の確立

≻大気中において作製したRE124膜の磁場中特性の向上
 >雰囲気制御によるRE123及びRE124膜の作製と、
 作製温度の低温下
 >後熱処理によるRE124 → RE123相変態と高特性化

KOHフラックスを用いたY124単結晶の低温合成

Table. RE124結晶の作製方法

Fabrication method	<i>Temp</i> . [°C]	Pressure [atm]	<i>Time</i> [h]
Solid state reaction ^[1]	800	1	168
High-pressure synthesis ^[2]	1050	100	21
Molten alkali hydroxide ^[3]	700	1	~ 4

S. Adachi et al., Physica C 175 (1991) 523
 T. Miyatake et al., Nature 341 (1989) 41.
 Y. T. Song et al., J. Cryst. Growth 300 (2007) 263

- ✓ 溶融させた水酸化アルカリを 用いて低温で¥124単結晶を 作製
- ✓ CaをREサイトに置換させ
 キャリア濃度を制御すること
 でT_cが91 Kまで上昇

Fig. Y124単結晶のSEM像^[3]

✓背景

> 超伝導現象の発見,及び超伝導転移温度(T_c)の変遷
> 超伝導の3つの臨界,及び高性能化への指針
> RE123, RE124超伝導体の特徴,及び現状と課題
> 目的・検討内容
> KOH flux法

✔研究成果

- 大気中において作製したRE124膜の磁場中特性の向上
 雰囲気制御によるRE123及びRE124膜の作製と、
 作製温度の低温下
- ≻後熱処理によるRE124 → RE123相変態と高特性化

Y124膜及びYCa124膜の配向性 (T_f = 641℃)

S. Funaki et al, Physics Procedia 27 (2012) 284

Y124膜及びYCa124膜の配向性 (T_f = 641℃)

641℃という低温でも2軸配向したY124膜が得られた

Y124膜及びYCa124膜のT。

Fig. Y124及びYCa124膜のR-T曲線

S. Funaki et al, Physics Procedia 27 (2012) 284

Y124膜にCaをドープすることで、Tcreroが8K上昇

✓ Y/Ca置換量x=0において、595~697°Cで124相の強いc軸配向
 ✓ c軸配向領域及びhigh-T。領域がxの増加に従って低温側に遷移

YCa124膜の不可逆磁場曲線

Fig. Irreversibility lines of Y124, YCa124 film

作製温度による結晶粒径の変化

YCa124膜のピンニングセンター

✓ Caドープにより多数のエッチピットが存在
 →転位によるピンニング効果で不可逆磁場が向上

YCa124膜のピンニングセンター

→余剰なCaによる析出物がピンニングセンター

他の超伝導体の不可逆磁場との比較

Fig. Irreversibility lines of various superconductor

✓背景

超伝導現象の発見,及び超伝導転移温度(T_c)の変遷
 超伝導の3つの臨界,及び高性能化への指針
 RE123,RE124超伝導体の特徴,及び現状と課題
 目的・検討内容
 KOH flux法

✔研究成果

≻大気中において作製したRE124膜の磁場中特性の向上
 > 雰囲気制御によるRE123及びRE124膜の作製と、
 作製温度の低温下

≻後熱処理によるRE124 → RE123相変態と高特性化

YBCOの酸素圧力ー温度相図

酸素分圧を低くすることで, 潜在的なT_cが高い RE123膜の作製が可能?

Y123膜のXRD測定結果

Y123膜の表面写真

高品質な結晶成長で見られるスパイラル成長を確認

Y123膜の ρ -Tカーブ及び T_c

650℃という低温下で,

高いT_c = 90.4 Kを有するY123膜の作製に成功

RE123のT_c及びRE/Ba置換

KOHフラックス法によるNd123膜の低温成膜 @ air

S. Funaki et al, Physics Procedia 65 (2015) 125

KOHフラックス法によるNd123膜の低温成膜 @ air

S. Funaki et al, IEEE TAS 26 (2016) 7201404

✓背景

> 超伝導現象の発見,及び超伝導転移温度(T_c)の変遷
> 超伝導の3つの臨界,及び高性能化への指針
> RE123, RE124超伝導体の特徴,及び現状と課題
> 目的・検討内容
> KOH flux法

✔研究成果

≻大気中において作製したRE124膜の磁場中特性の向上
 > 雰囲気制御によるRE123及びRE124膜の作製と、
 作製温度の低温下

≻後熱処理によるRE124 → RE123相変態と高特性化

RE123, RE124超伝導体の特徴

Ba原料変更による生成相の制御

using BaCO₃ and BaO₂, respectively

Y. Miyachi et al, Physics Procedia 65 (2015) 129

実験方法 – 相変態によるEu123の形成

SHEMANE

相変態熱処理条件

使用膜	:Eu124/SrTiO ₃ (NaOH-KOH共晶溶液, BaO ₂ 使用, 475°C 成膜)
熱処理温度	: 550~825°C
熱処理時間	:12時間
雰囲気	: P(O ₂)=0.2 atm, 10 ⁻³ atm, 10 ⁻⁴ atm, 10 ⁻⁵ atm (N ₂ -O ₂ 混合ガス)

- Eu124/SrTiO₃膜の成膜 膜のカット
- Eu124→Eu123相変態熱処理

- 合成相・T_c・面内の元素分布の評価

酸素雰囲気下で450°Cから徐冷

相変態熱処理で得られた膜の相の同定

- P(O₂)= 10⁻⁴ atmのXRDの結果

Intensity [a.u.]

- 600°C → Eu247 (00*l*)からの回折
- 625,650°C → Eu123 (00*l*)からの回折
- 相変態熱処理後もc 軸配向を維持

Eu124膜の熱分解によるP(O₂)-T相図

Eu124熱分解膜のP(O₂)-T相図

- 酸素分圧の低下に従って、 相境界線が低温側に移動
- Y124と比較して、低い温度で相 境界線が存在
- Yでは見られない低酸素分圧に おけるEu247の生成
- P(O₂) =10⁻⁴~10⁻⁵atmでは
 600°C前後の低い温度で
 相変態が可能

相変態熱処理膜のR-T測定

相変態膜におけるEu/Ba置換

SEM-EDSによるCu析出挙動の観察

•As-grown(Eu124)膜
 ⇒ 各元素が均一に分布

・相変態Eu123+Cu膜
 ⇒ 数µmのCuが析出

Cu析出挙動は温度によって異なり、 高温であるほど表面に析出

KOHフラックスを用いて, 低温でRE124, RE123膜の作製を試み, 以下の知見を得た

- > 大気中・650°Cにおいて、2軸配向したY124膜を作製することに成功した
- > CaをドープしたYCa124膜は高いT_c~90 Kを示した
- Y124膜は600~700°Cで強いc軸配向を示し、c軸配向領域及びhigh-T。領域が Y/Ca置換量の増加にともなって低温側に遷移した
- > Y/Ca置換量が多く、かつ低温であるほど高い不可逆磁場を示した
- > 低酸素分圧にすることで、550°C以上で2軸配向したY123膜の作製に成功した
- > 低酸素分圧下・650°Cで作製したY123膜は高い $T_c^{\text{zero}} = 90.4 \text{ K}$ を示した
- > 大気中・425°Cにおいて、2軸配向したNd123膜に作成に成功した
- > 作製温度の低温下にともなって、Nd/Ba置換が促進され T_c が低下した
- RE124からの相変態熱処理を経ることで、全ての工程が600°C程度で、高T_cかつ
 PCを含む高品質なRE123相を得ることに成功

本研究を遂行するにあたり,研究費をご支援 いただいた日本板硝子材料工学助成会に深く 感謝申し上げます.

また、本研究で得られた成果を国際会議で発 表するに際し、平成28年度の研究成果普及助 成のご支援をいただきました.

重ねて深謝申し上げます.