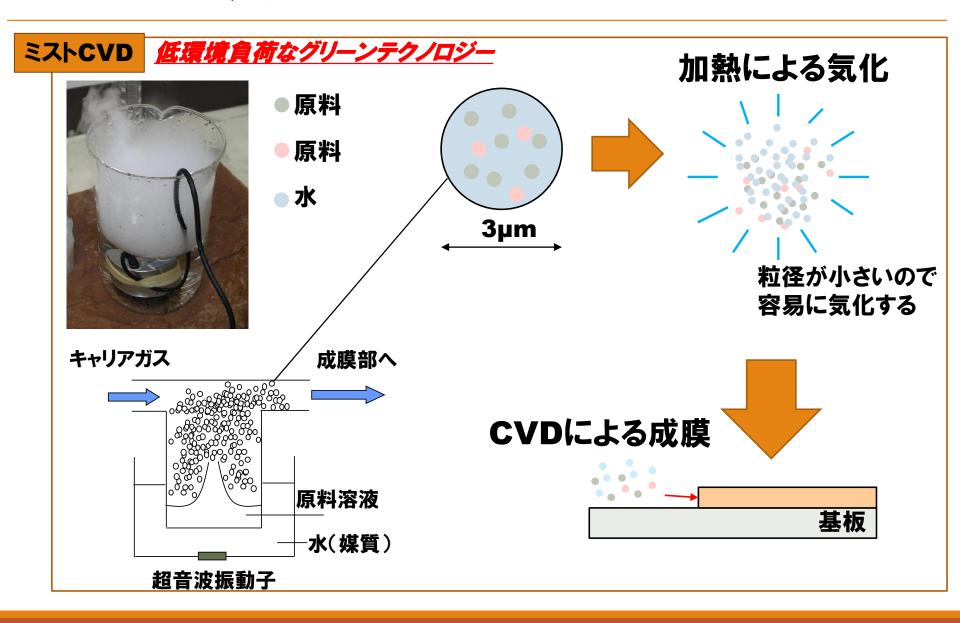
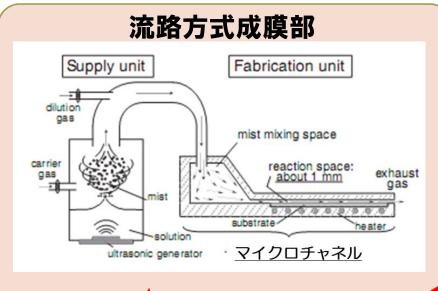
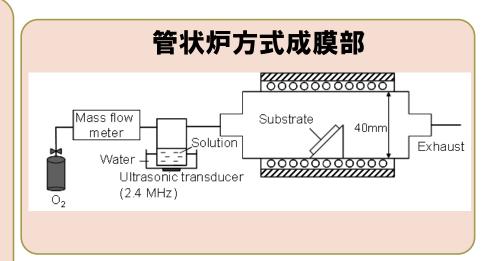
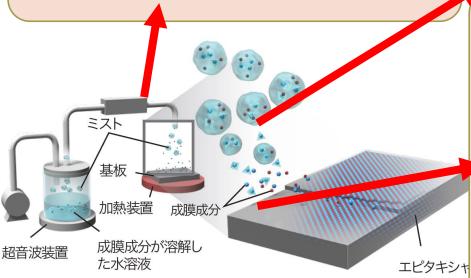

ミストCVD法によるGa₂O₃の エピタキシャル成長技術

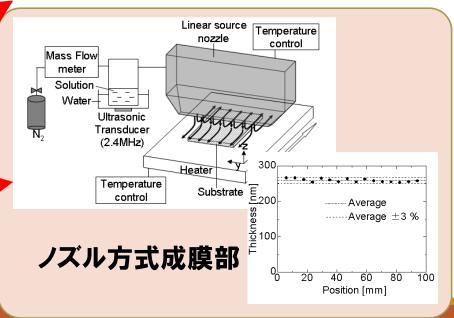
京都工芸繊維大学 電気電子工学系 西中浩之




ミストを利用した半導体製造装置




ミストCVD法

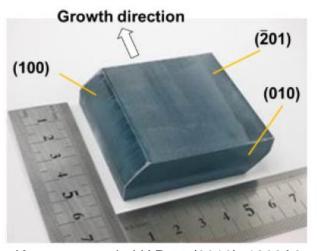


ミストCVD法の装置

ミストCVDで形成できる金属酸化物

н		当研究室で検討可能な元素													Не		
Li	Be	ミストCVD法で実績のある元素 Be									В	С	N	o	F	Ne	
Na	Mg	Лд									AI	Si	P	S	CI	Ar	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Хе
Cs	Ва	ランタ ノイド	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn

背景


Ga₂O₃: 超ワイドバンドギャップ半導体

特徴

大きなバンドギャップ : 4.4~5.3 eV

キャリア密度制御 : 10¹⁵~10¹⁹cm⁻³(n型ドープ)

単結晶基板(β型) : 融液成長によるバルク単結晶が製作可能

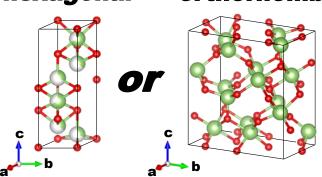
Kuramata et al. JJAP 55 (2016), 1202A2

SiC(3.3 eV)やGaN(3.4 eV)に代わる次世代パワー半導体として期待。 より高耐圧で低価格なパワー半導体応用に向けて研究が進んでいる

5つの結晶多形

Ga₂O₃:5つの結晶多形

α-type corundum	β-type monoclinic	γ-type spinel	δ-type bixbyite	к-type orthorhombic
Sapphireと同じ 結晶構造 Sapphire基板で の検討がほとんど	熱的最安定相 融液法で単結晶バ ルクの成長が可能 単結晶ウェハの利 用が多い	MgAI ₂ O ₄ と同じ結 晶構造 スピネル基板が利 用される	ITOと同じ結晶構 造 結晶成長例なし	種々の基板で成長が 可能 Sapphire, GaN, AIN, SiC, STO, MgO,SnO ₂ など
Mist CVD, HVPE, MBEなど	MBE, HVPE, MOCVD, PLDなど	MBE, PLD, Mist CVD		HVPE, Mist CVD, MOCVD, MBEなど
パワーデバイス応用 FLOSFIA	パワーデバイス応用 NICTなど 海外多数			強誘電体特性を持つ


K-Ga₂O₃の研究

1952年: Royらによってε(κ)-Ga₂O₃の存在が知られる¹⁾

2002年: Oritaらによって、orthorhombic構造のGa₂O₃の成長が示される²⁾

2013年: Playfordらによってhexagonal構造であると報告³⁾

ε(κ)- **Ga**₂**O**₃**?** hexagonal orthorhombic

2015年: OshimaらによってHVPE法で単相のε(κ)-Ga₂O₃のヘテロエピタキシャル成長に成功⁴⁾ (論文ではhexagonal構造と記載)

2016年: Mezzadriらから、ε(κ)-Ga₂O₃の強誘電体特性の報告⁵⁾

2017年: Coraらによって、このε(κ)-Ga₂O₃はorthorhombic構造であることが示される⁶⁾

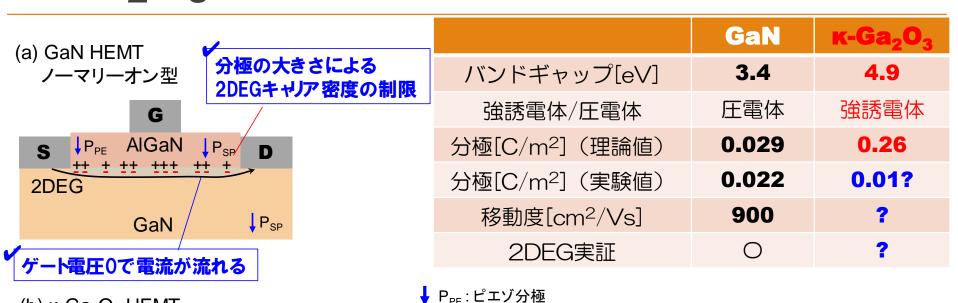
κ-Ga₂O₃は比較的新しい強誘電体材料 半導体+分極を持つことから、 GaNと同様に分極による二次元電子ガスを 利用したHEMTが期待

¹⁾R. Roy et al. JACS, 74 (1952), 719, 2)M. Orita et al. TSF, 411 (2002), 134

³⁾H. Playford et al. Chem.-Eur.J., 19 (2013), 2803, 4)Y. Oshima et al. JAP, 118 (2015), 085301

⁵⁾F. Mezzadri et al. Inorg. Chem., 55 (2016), 12079, 6)I. Cora et al. CrystEngComm, 19 (2017), 1509

K-Ga₂O₃とGaNの比較


	GaN	к-Ga ₂ O ₃
バンドギャップ[eV]	3.4	4.9
強誘電体/圧電体	圧電体	強誘電体
分極[C/m²](理論值)	0.029	0.26
移動度[cm²/Vs]	900	300?
2DEG濃度	0	©?
基板	Si	同じ結晶構造 の基板

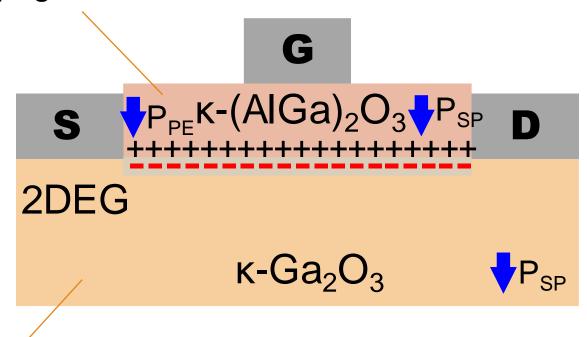
GaN

к-Ga₂O₃による新規パワーデバイス

♣ P_{SP}: 自発分極

(b) κ-Ga₂O₃ HEMT 強誘電体ゲート型HEMT

高密度2DEGキャリア密度


強誘電体のため スイッチ可能

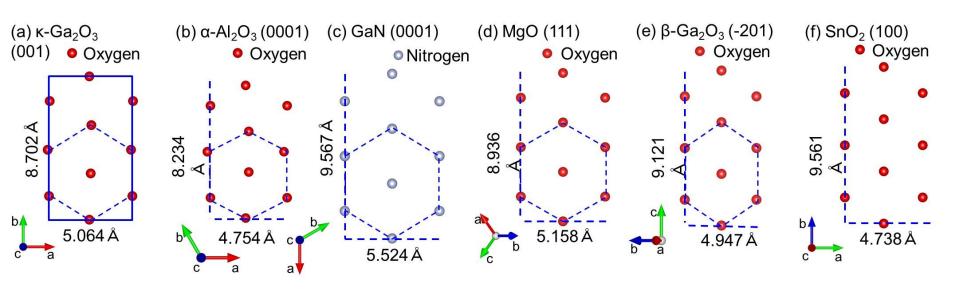
G
S → P_{PE}K-(AlGa)₂O₃ → P_{SP} D
2DEG
K-Ga₂O₃ → P_{SP}
大きな分極による
極性反転による2DEGの消滅

K-Ga₂O₃は強誘電体のため 2DEGのスイッチが可能。 パワーデバイスではノーマリーオン 動作は故障時の安全性が担保で きないため、対策が必須。

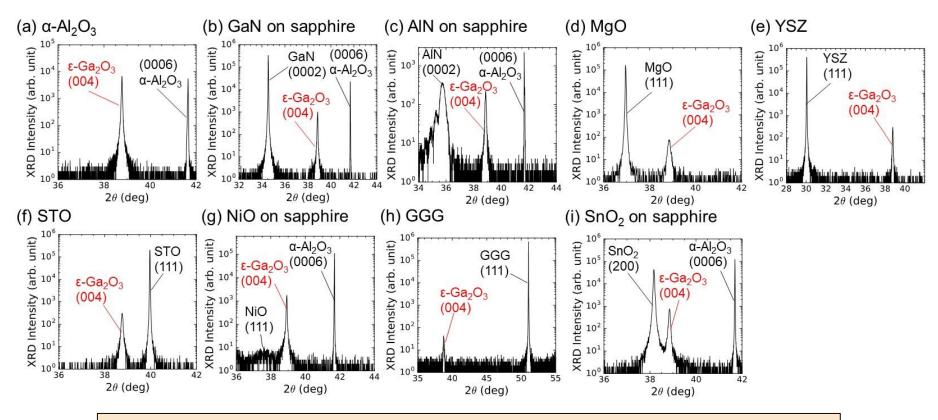
K-Ga₂O₃のHEMT応用に向けた検討

2. K-Ga₂O₃の混晶化技術

1. κ-Ga₂O₃のヘテロエピタキシャル成長技術

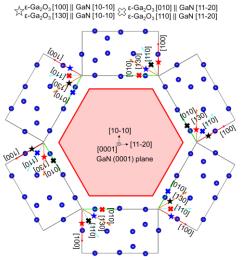

к-Ga₂O₃のヘテロエピタキシャル成長技術

	成長法	機関				
	MOCVD	Parma Univ., KAUST, Dalian Univ., Carnegie Mellon Univ.				
CVD	HVPE	NIMS, Perfect Crystals LLC				
	ALD	Parma Univ.				
	mist CVD	京工繊大, 東北大				
DVD.	MBE	Paul-Drude-Institut				
PVD	PLD	Leipzig				

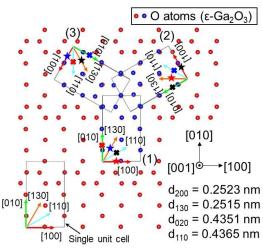

基板										
六方晶	GaN, AIN, 6H-SiC									
菱面体晶	α-Al ₂ O ₃ , LiTaO ₃ , LiNbO ₃									
立方晶	MgO, YSZ, STO, NiO, ITO, GGG									
直方晶	SnO ₂									
斜方晶	β-Ga₂O₃(-201)									

κ-Ga₂O₃の成長では、ほとんどがCVD法 PVDではSnやInなどの添加物が必要

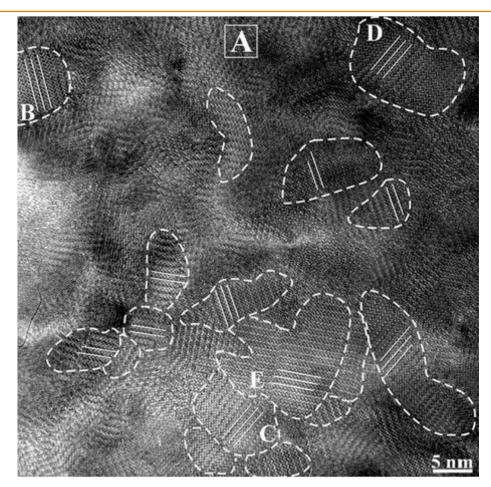
 κ - Ga_2O_3 は、多くの基板上でエピタキシャル成長する



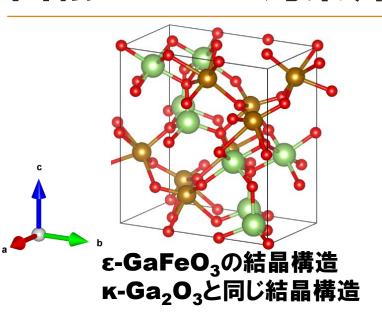
K-Ga₂O₃のヘテロエピタキシャル成長技術



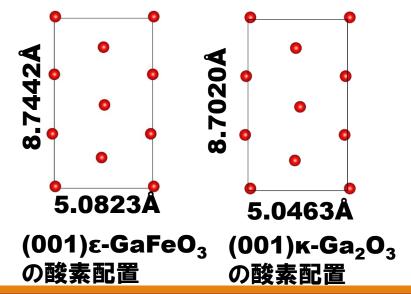
ミストCVDでの実績(ヘテロエピタキシャル κ - Ga_2O_3)

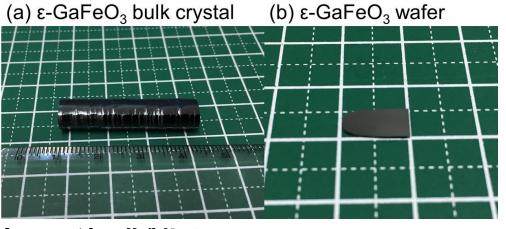

к-Ga₂O₃のヘテロエピタキシャル成長での課題

基板由来の回転ドメイン

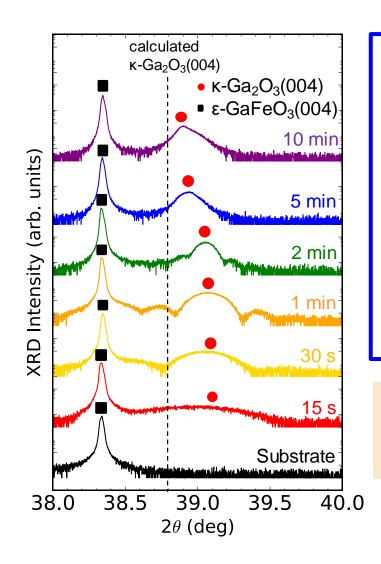

構造上の回転ドメイン

I. Cora et al. CrystEngcomm, 11, (2017) 1509

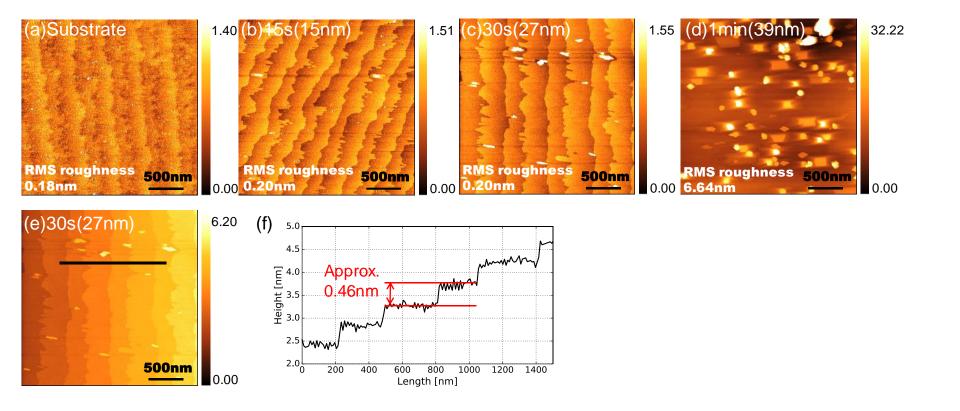

回転ドメインの影響で単結晶ではなく、 小さなドメインの集合体(数nm)となっている


回転ドメインの対策(新しい基板の採用)

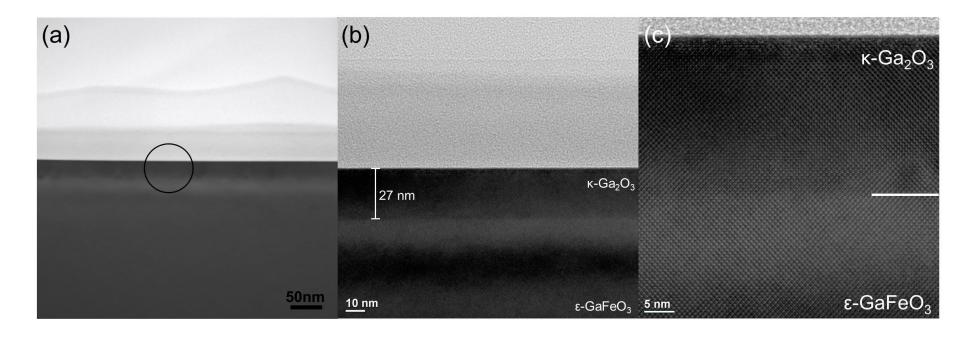
格子定数	ε-GaFeO ₃ 1)	ε-Ga ₂ O ₃ ²⁾	格子不整合
a [Å]	5.0823	5.0463	0.7%
b [Å]	8.7442	8.7020	0.5%
C [Å]	9.3927	9.2833	1.2%


- 1)T. Arima et al., Phys. Rev. B, 70, (2004), 064426.
- 2)I. Cora et al., Crystengcomm, 19, (2017) 1509.

高圧FZ法で作製したε-GaFeO₃(Oxide corp.)

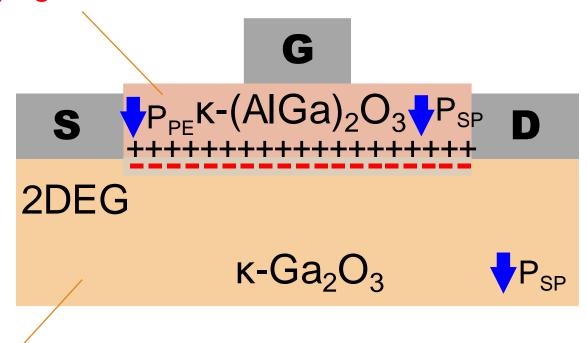

ε-GaFeO₃上のκ-Ga₂O₃

- 1. κ - Ga_2O_3 の ϵ - $GaFeO_3$ 上でのエピタキシャル成長に成功
- 2. κ - Ga_2O_3 はラウエ振動が観察される高品質な膜である
- 3. κ - Ga_2O_3 は計算から得られるピーク位置より高角度側に観察される。
- → コヒーレント成長しており、歪によるもの


従来の κ - Ga_2O_3 ではこのようなコヒーレント成長やラウエ振動が見られた報告はなく、非常に高品質な膜が得られている

ε-GaFeO₃上のκ-Ga₂O₃の表面状態

成長時間が短いときはステップフロー成長 徐々に島成長に移る 条件を変えることで、厚膜でもステップテラス構造が観察される膜も形成できている


ε-GaFeO₃上のκ-Ga₂O₃のTEM観察

ステップフロー成長している膜では明瞭な転位は発生していないまた、基板/膜界面も明瞭なミスフィット転位などは見られず、 よく揃った原子配置となっている

K-Ga₂O₃のHEMT応用に向けた検討

2. K-Ga₂O₃の混晶化技術

1. κ-Ga₂O₃のヘテロエピタキシャル成長技術

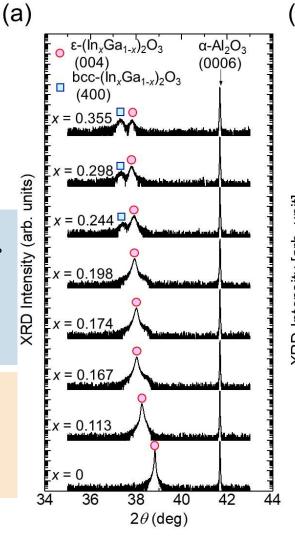
ミストCVDでの混晶膜形成

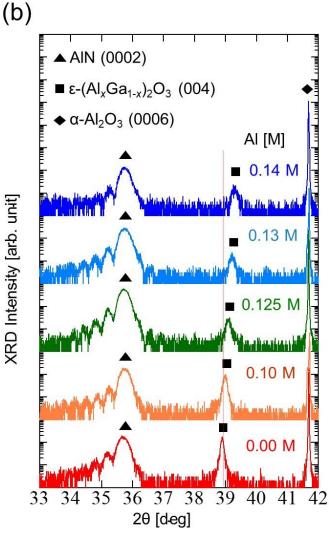
н	当研究室で検討可能な金属酸化物													Не			
Li	Ве	Be ミストCVD法で実績のある金属酸化物										В	С	N	0	F	Ne
Na	Mg	Мд										AI	Si	P	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Хе
Cs	Ва		Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn

Ga原料

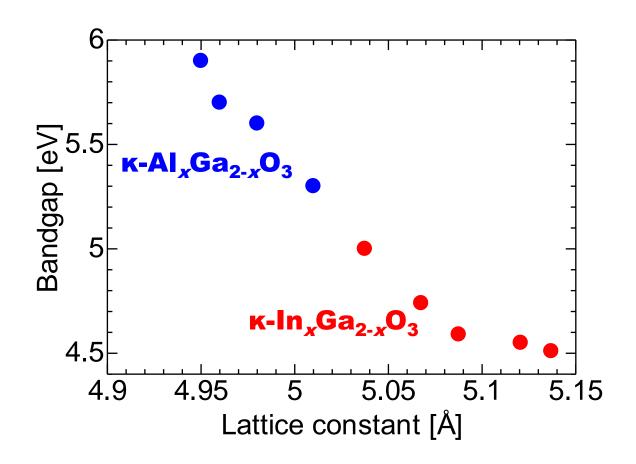
混晶原料

ミストCVDでは原料を一緒に溶解するだけ!

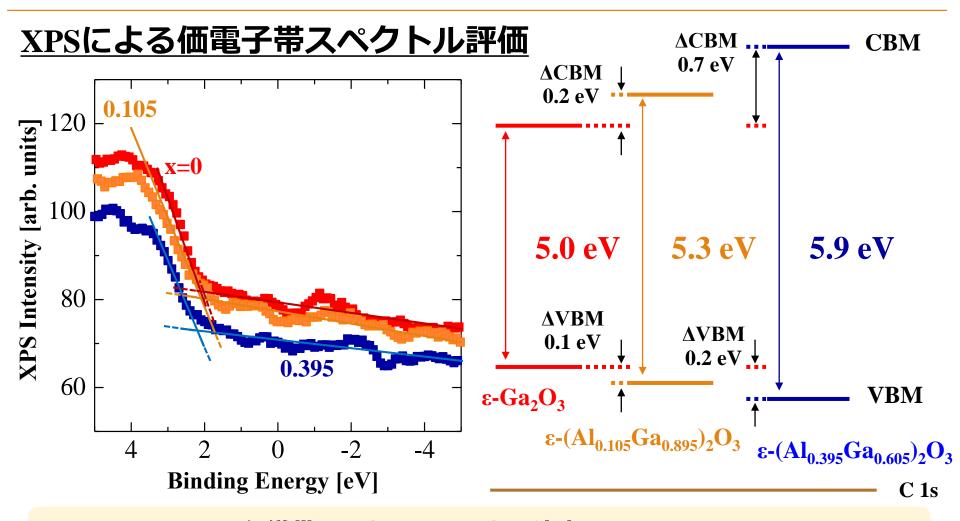

(実際には溶解度、反応速度などの影響でいろいろ調整必要です)


K-Ga₂O₃とAl₂O₃,In₂O₃の混晶

Al Ga In


κ-Ga₂O₃にAIやInを組み 込むことでバンドギャップ 変調が可能 HEMTの実現にはバンド ギャップ変調が必須

ミストCVD法で In組成 x<0.2 AI組成 x<0.4 まで組み込むことに成功



K-Ga₂O₃のバンドギャップ変調

 κ -Ga $_2$ O $_3$ のバンドギャップは4.5(In) \sim 5.9(AI) eVまで変調することに成功した

バンドオフセット評価の結果

 $\Delta VBM + Egから伝導帯バンドオフセットを決定。<math>\Delta CBM = 0.2 \sim 0.7 \text{ eV}$ α , β -(AI_xGa_{1-x}) $_2O_3$ と同様に、Type-Iであることも明らかになった。

まとめ

- ・GaNを超えるHEMT応用に向けたミストCVD法による κ -Ga₂O₃のエピタキシャル成長について報告した
- ・HEMT応用に向けて重要な1. κ -Ga₂O₃のヘテロエピタキシャル成長技術、2. κ -Ga₂O₃の混晶化技術について報告した

1. κ-Ga₂O₃のヘテロエピタキシャル技術

新しい ϵ -GaFeO $_3$ 基板の採用で大きな課題であった回転ドメインを抑制し、単一ドメインの形成に成功した

2. κ-Ga₂O₃の混晶化技術

 κ -Ga₂O₃のバンドギャップは4.5(In)~5.9(AI) eVまで変調することに成功した

またAIとの混晶によるバンドアライメントはType-Iであり、HEMTに利用できることが分かった