植物の成長を促進するハイブリッドガラスの開発

関西学院大学 生命環境学部 森崎泰弘

Synthesis of Hybrid Glasses for Plant Growth

Yasuhiro Morisaki Department of Biological and Environmental Sciences, Kwansei Gakuin University

当研究室で開発した面性不斉[2.2]パラシクロファン化合物を光学活性ビルディングブ ロックとして用い、π共役系を拡張した円偏光発光性分子を種々合成した。すなわち、X 字型の円偏光発光性分子をシリカマトリックスに分散させた有機 – 無機ハイブリッドガラ ス・カゴ型シルセスキオキサンに導入した有機 - 無機ハイブリッド分子・ヘリセンが積層 した片巻らせん分子を合成し物性を評価した。また、π電子系の積層配向性と円偏光発光 特性の相関を明らかにした。

[2.2]Paracyclophane is a cyclic molecule consisting of face-to-face phenylenes stacked in proximity. [2.2]Paracyclophanes with substituent(s) are planar chiral compounds without chiral centers because of the suppressed rotational motion of the phenylenes. We reported that [2.2]paracyclophane-based chiral molecules exhibited excellent circularly polarized luminescence (CPL) properties. In this study, using planar chiral [2.2]paracyclophane compounds as optically active building blocks, various CPL-emitting molecules with extended π -conjugated systems were prepared. Organic-inorganic hybrid glasses in which X-shaped CPL-emitting molecules were dispersed in silica matrices, organic-inorganic hybrid molecules introduced into cage-shaped silsesquioxane, and one-handed helical molecules in which helicenes were stacked. Optical and chiroptical properties were evaluated in detail. We also revealed the correlation between the orientation of π -electron systems stacked by [2.2]paracyclophane skeletons and the CPL emission characteristics.

1. はじめに

[2.2]パラシクロファンは二つのベンゼン環が積層したユニークな構造の分子で¹⁾、ベンゼン環の回転が不可能なため置換基の数と位置によってベンゼン環に裏表が存在し面性 不斉を発現する。光学活性な[2.2]パラシクロファン化合物は1955年²⁾に報告されて以降、 キラル補助基や遷移金属錯体のキラル配位子などに応用されるなど、有機化学ならびに有 機金属化学分野ではよく知られた化合物である。しかしながら、我々が研究に着手するま で光学活性[2.2]パラシクロファンを高分子化学や材料科学分野に応用した例はなかった。 2012年に我々は二置換[2.2]パラシクロファン化合物の新規光学活性法を開発し³⁾、官能 基変換することで面性不斉モノマーを得るとともに、π電子系が積層した光学活性スルー スペース共役系ポリマーと環状三量体の合成に成功した⁴⁾。これらはクロロホルム希薄溶 液中(1.0×10⁻⁵M)、光励起によって高輝度かつ良好な異方性で円偏光発光(CPL: 右巻き と左巻きの円偏光発光強度が異なるキラルな発光)した。当時は有機分子の分子分散系に おける CPL に関する報告例は少なく、面性不斉分子としては初めての例であった。その後、 我々は新たに 5 種類の面性不斉[2.2]パラシクロファンの光学分割法を開発し⁵⁾、それら をビルディングブロックとして様々な円偏光発光性分子を合成してきた。本研究では、面 性不斉[2.2]パラシクロファンを基盤とするπ電子系積層型円偏光発光性分子の応用を模 索し、アルコキシシラン類とのゾル – ゲル反応によって円偏光発光性有機 - 無機ハイブリ ッドガラスを合成することを目的として検討を行った。さらに、ケイ素と酸素からなるカ ゴ型シルセスキオキサンとのハイブリッド化も試みた。また、π電子系がX字および V 字に積層した分子を種々合成し、それらの円偏光発光挙動を実験的かつ理論的に考察した 結果 ^{5b,6}について述べる。

2. 円偏光発光を評価する指標

CPL特性を評価する代表的指標として CPL 異方性因子 (g_{lum} 値)があり、次の式(1)で表 される。有機分子の分子分散系(1.0×10^{-5} M 希薄溶液など)において、 $|g_{lum}|$ 値が 10^{-3} の 桁であれば高い異方性と言える。

 $g_{lum} = 2 (I_{left} - I_{right}) / (I_{left} + I_{right})$ (1) ただし、 $I_{left} =$ 左円偏光発光強度、 $I_{right} =$ 右円偏光発光強度

3. 円偏光発光性有機-無機ハイブリッドガラスの合成

我々が開発した光学分割法によって合成した (S_p) -**1**を基に、X字型の円偏光発光性部位 を有するモノマー (S_p) -**2**を合成した(Figure 1)。 (S_p) -**2**を HCl 存在化で Si(OMe)₄ および Me₂Si(OMe)₂ とゾルーゲル反応させハイブリッドガラス薄膜を合成した(Figure 1)。

Si (OMe)₄ と SiMe₂(OMe)₂のモル比を変えて反応を試みたところ、 (S_p) -**2**:Si (OMe)₄: Me₂Si (OMe)₂=0.25:100:100の時に柔軟かつ透明なハイブリッドガラスが得られ、それ よりも Si (OMe)₄の割合が少ない時は粘性オイル状のハイブリッド、多い時は硬くひび割 れたハイブリッドが得られた。走査型電子顕微鏡(SEM)観察の結果、少なくともマイク ロメートルレベルでは有機成分と無機成分が均一に分散していることが確認できた。

Figure 2 には (S_p) - **2**:Si (OMe)₄:Me₂Si (OMe)₂=0.25:100:100 のハイブリッドガラスの 発光スペクトル(下)と CPL スペクトル(上)を示す。発光スペクトルは 405 nm 付近にピー クトップが観られ青色に発光した。その発光領域にミラーイメージで CPL シグナルが観 測できた。 S_p 体は正(すなわち左巻きの CPL)・ R_p 体は負(すなわち右巻きの CPL)のシグ ナルを与え、その $|g_{hum}|$ 値は 0.9 × 10⁻³ と良好な値であった。

Figure 1. Synthesis of CPL-emissive organic-inorganic hybrid glass.

Figure 2. PL and CPL spectra of the hybrid glasses.

4. カゴ型シルセスキオキサンと円偏光発光性分子による有機-無機ハイブリッドの合成

多面体シルセスキオキサン(Polyhedral Silsesquioxane=POSS)はシロキサン結合(Si-O-Si)からなる多面体型の無機骨格を有する構造体である。ケイ素原子には幅広い有機基を 導入できる利点がある。特に、六面体 POSS のサイズは 1~2nm 程度で、通常のコロイダ ルシリカなどの粒子より小さく、分子と粒子の中間的な領域を占めうることからもナノテ クノロジー分野で興味が持たれている。本研究では、このカゴ型六面体 POSS の八つのケ イ素頂点に円偏光発光性分子を導入した有機-無機ハイブリッドの合成を行った。

出発物質である **POSS-1**⁷⁾と(S_p)-**3**⁸⁾(Figure 3)はそれぞれ既報に従い合成した。両者を パラジウム錯体を触媒とし てクロスカップリングさせ

てクロスカップリングさせ ることにより、対応する (S_p)-**POSS**を収率 30%で 得た。

得られたハイブリッド (S_p) -POSS は優れた成膜 性を示し、drop-cast 法に よって均一な薄膜を形成し た。薄膜を光励起したとこ ろ443nm にピークトップ を有する蛍光発光が観測さ れ、発光領域にミラーイメ ージで CPL シグナルが検 出された(Figure 4)。POSS ハイブリッドも上述のハイ ブリッドガラスと同様に、 $S_{\rm p}$ 体は正· $R_{\rm p}$ 体は負のシ グナルを与え、その |gum| 値は1.3×10-3と高い値で あった。

Figure 3. Synthesis of organic-inorganic hybrid (*S*_p)-**POSS** containing CPL-emissive units.

Figure 4. PL and CPL spectra of (S_p) - and (R_p) -**POSS** thin films.

5. 積層π電子系の配向とCPLの相関に関する考察1

上述のハイブリッドガラスと POSS 有機 – 無機ハイブリッドにおいて円偏光発光部位と して[2.2]パラシクロファンを基盤とする π 電子系積層 X 字型骨格を用いた。本研究では、 X 字型分子の積層 π 電子系の配向と CPL の相関について調査した。すなわち、ドナー置 換基(MeO 基)を有する π 電子系を二通りに配向させた X 字型分子(S_p)-X1 と X2 を合成 し(Figure 5) CPL の違いを考察した ^{6a}。

Figure6にはX1とX2のクロロホルム希薄溶液中におけるPLならびにCPLスペクトルを示す。両者はドナー置換基(MeO基)の位置に依らずほとんど同じスペクトルを与えた。時間依存密度汎関数理論によるシミュレーションを行ったところ、発光種はほとんど同じであり、励起状態における分子軌道はドナー置換基の影響をほとんど受けず、積層した中央のベンゼン環付近に局在化していることが分かった。

Figure 5. Planar chiral [2.2] paracyclophane-based X-shaped molecules.

Figure 6. PL and CPL spectra of X1 and X2 in diluted CHCl₃ solutions.

6. 積層π電子系の配向とCPLの相関に関する考察2

 π 電子系をX字型に積層させた場合、 π 電子系の配向に依らず同じCPLが観られたが、 これらをV字型に積層させると、配向性によってどのようなCPLが観られるかを調査す るため、種々のV字型分子を合成した^{6be)}。代表例をFigure7に示す。すなわち、ドナー 置換基を有する π 電子系を角度 120 度で積層させ、その配向性とCPLの相関を調べ た^{6b)}。

Figure8には**V1**と**V2**のクロロホルム希薄溶液中における PL ならびに CPL スペクト ルを示す。X字型分子と異なり、両者はドナー置換基(MeO 基)の位置に依存して異なる スペクトルを与えた。特に円偏光発光挙動は大きく異なり、**V1**の |g_{lun}| 値が 1.8×10⁻³ で あるのに対し、**V2**の |g_{lun}| 値は 1.1×10⁻³ と見積もられ、ドナー置換基を有するベンゼン

Figure 7. Structures of V-shaped molecules V1 and V2.

Figure 8. PL and CPL spectra of V1 and V2 in diluted CHCl₃ solutions.

環で π 電子系を積層させると $|g_{lum}|$ 値が低下することが分かった。時間依存密度汎関数理 論によるシミュレーションを行ったところ、両者ともに S₁ 状態における軌道は主に片側 の π 電子系にあることがわかり、もう片側の π 電子系にも非局在化していることが分かっ たが、その非局在化の度合いが異なっていることが分かった。より軌道が非局在化してい るのが V1 であり、発光の際の磁気双極子モーメントが大きくなったため V2 と比較して 高い $|g_{lum}|$ 値で円偏光発光したことが示唆された。

7. 新規面性不斉分子の光学分割法の開発とヘリセン積層分子の合成

2012 年以降、我々は6種類の面性不斉[2.2]パラシクロファンの光学分割法を開発して きたが⁵⁾、その6つ目に関して簡単に紹介したい^{5b)}。Figure9に示す様に pseudo-*para*dibromo [2.2] paracyclophane (4)のブロモ基の一つをヒドロキシ基に変換し、キラル補助 剤 6を導入することでジアステレオマーを合成した。これらは一般的なシリカゲルカラ ムクロマトグラフィーによって分離することができ、キラル補助基を除去することにより エナンチオピュアな面性不斉[2.2]パラシクロファン8を単離することができた。

本研究では得られた面性不斉[2.2]パラシクロファン8をビルディングブロックとして 用い、Heck – 溝呂木クロスカップリングによってスチレンとビニルナフタレンとを段階 的に反応させ(Figure9)、ヨウ素存在下で光による酸化的環化反応を行うことで、フェナ ントレンとベンゾ[c]フェナントレンが積層した片巻らせん分子 11 を合成した。

得られた分子の希薄溶液を光励起したところ振動構造を有する蛍光発光が観測され、その発光領域にミラーイメージで CPL シグナルが検出された(Figure 10)。時間依存密度汎関数理論による計算から発光はベンゾ[c]フェナントレンから発光していることが分かった。CPL の符号は S_p 体は負、 R_p 体は正であり、その $|g_{lum}|$ 値は 1.4×10^{-3} と高い値で円偏光発光することが分かった。

Figure 9. Optical resolution of pseudo-*para*-disubstituted [2.2] paracyclophane and synthesis of onehanded helical molecule consisting of phenanthrene and benzo[c]phenanthrene.

Figure 10. PL and CPL spectra of **11** in diluted CHCl₃ solutions.

8. 結論

以上、本研究では面性不斉[2.2]パラシクロファンを基盤とするπ電子系積層型円偏光 発光性分子を合成し、それをゾルーゲル反応によってシリカマトリックス中に分散させる ことで、円偏光発光性有機-無機ハイブリッドガラスを合成した。さらに、ケイ素と酸素 からなるカゴ型シルセスキオキサンとのハイブリッド化も行った。また、新規面性不斉 [2.2]パラシクロファンの光学分割に成功し、それを用いてヘリセンが積層したらせん分 子の合成と円偏光発光特性をはじめとする物性を解明した。一方、π電子系がX字およ びV字に積層した分子を種々合成し、π電子系の配向と円偏光発光挙動の相関を実験的 かつ理論的に明らかにした。

謝辞

本研究は令和3年度日本板硝子材料工学助成会の研究助成を受けて行いました。助成金 を賜りましたこと厚く御礼申し上げます。

参考文献

- a) Cyclophane Chemistry: Synthesis, Structures and Reactions (Ed.: F. Vögtle), John Wiley & Sons: Chichester, 1993; b) Modern Cyclophane Chemistry (Eds.: R. Gleiter, H. Hopf), Wiley-VCH, Weinheim, 2004; c) H. Hopf, Angew. Chem., Int. Ed., 47, 9808 (2008).
- 2) D. J. Cram, N. L. Allinger, J. Am. Chem. Soc. 77, 6289 (1955).
- 3) Y. Morisaki, R. Hifumi, L. Lin, K. Inoshita, Y. Chujo, Chem. Lett., 41, 990 (2012).
- 4) Y. Morisaki, R. Hifumi, L. Lin, K. Inoshita, Y. Chujo, Polym. Chem., 3, 2727 (2012).
- 5) a) M. Tsuchiya, H. Maeda, R. Inoue, Y. Morisaki, *Chem. Commun.*, 57, 9256 (2021); b)
 A. Yanagawa, M. Tsuchiya, R. Inoue, Y. Morisaki, *J. Mater. Chem. C*, 11, 986 (2023); c)
 K. Kikuchi, J. Nakamura, Y. Nagata, H. Tsuchida, T. Kakuta, T. Ogoshi, Y. Morisaki, *Chem. Asian J.*, 14, 1681 (2019); d) R. Sawada, M. Gon, J. Nakamura, Y. Morisaki, Y. Chujo, *Chirality*, 30, 1109 (2018); e) Y. Morisaki, M. Gon, T. Sasamori, N. Tokitoh, Y. Chujo, *J. Am. Chem. Soc.*, 136, 3350 (2014).
- a) K. Ogawa, N. Miki, R. Inoue, Y. Morisaki, *ChemistrySelect*, 8, e202301844 (2023); b)
 N. Miki, H. Maeda, R. Inoue, Y. Morisaki, *ChemistrySelect*, 6, 12970 (2021); c) D.
 Tabata, R. Inoue, Y. Sasai, Y. Morisaki, *Bull. Chem. Soc. Jpn.*, 95, 595 (2022); d) K.
 Matsumura, R. Inoue, Y. Morisaki, *Tetrahedron*, 138, 133406 (2023); e) H. Maeda, R.
 Inoue, A. Saeki, Y. Morisaki, *Polym. J.*, 55, 537 (2023).
- 7) M. F. Roll, M. Z. Asuncion, J. Kampf, R. M. Laine, ACS Nano, 2, 320 (2008).
- 8) Y. Sasai, H. Tsuchida, T. Kakuta, T. Ogoshi, Y. Morisaki, *Mater. Chem. Front.* **2**, 791 (2018).